Determining SARS-CoV-2 infection rates by nucleocapsid seropositivity in a vaccinated population with high seroprevalence

Karen Colwill¹, Adrian Pasculescu¹, Freda Qi¹, Kento T Abe¹,², Altynay Shigayeva¹,³, Zoe Zhong¹,³, Susan Lau⁴, Andrew Rogalsky⁴, Melanie Delgado-Brand¹, Tulunay Tursun¹, Geneviève Mailhot¹, Bhavisha Rathod¹, Mariam Iskilova¹, Jenny H Wang¹, Brenda Coleman⁵, Christopher Kandel⁶, Keith Jarvi¹,⁴, Allison McGeer¹,³,7, Anne-Claude Gingras¹,²

¹Lunenfeld-Tanenbaum Research Institute, Sinai Health; ²Department of Molecular Genetics, University of Toronto; ³Department of Microbiology, Sinai Health; ⁴Department of Urology, Sinai Health, University of Toronto; ⁵Dalla Lana School of Public Health, University of Toronto East Health Network, Michael Garron Hospital; ⁷Department of Laboratory Medicine and Pathology, University of Toronto

Introduction

At the pandemic onset, we developed an ELISA assay to 3 SARS-CoV-2 antigens: spike (S), its receptor binding domain (RBD) and nucleocapsid (N)^{1,2}. To avoid false positives for SARS-CoV-2 seropositivity, we required samples to be positive for at least two different antigens. Once vaccinations targeting spike were introduced, estimates of natural infection relied on N only.

Objective

To reassess the seropositivity threshold for an anti-N ELISA assay set early in the pandemic to improve the assay's predictive value for measuring SARS-CoV-2 infection in a vaccinated population with high seroprevalence.

Methods

Samples were analyzed in an automated chemiluminescent ELISA for total IgG antibodies to N, S or RBD. Raw values were normalized to a standard to create relative ratios (RRs) and converted to BAU/mL values. Receiver operating characteristics (ROC) curve analysis was performed. Results for N were stratified by vaccination status, time from infection and variant of concern.

Results

Figure 1. Density distribution of known negatives & positives.

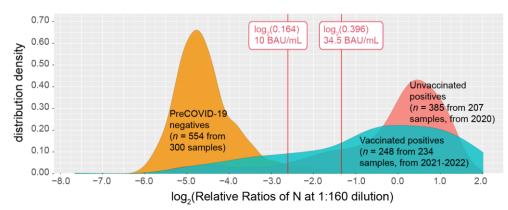


Table 1. Specificity & sensitivity at different N BAU/ml thresholds.

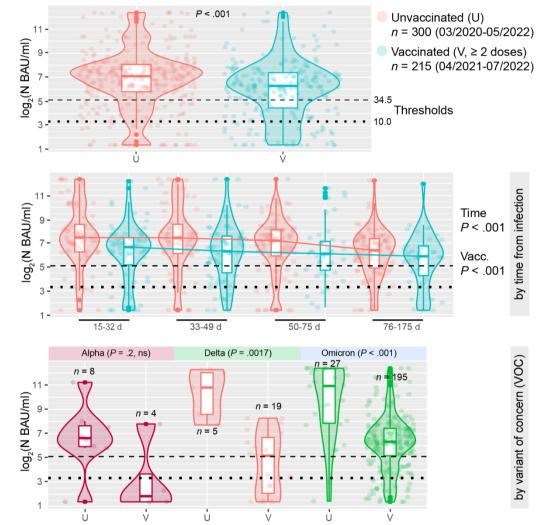

Plasma/Serum	Unvaccinated		Vaccinated		
	N (34.5)	N (10)	N (34.5)	N (10)	
Specificity	99%	96%	99%	96%	
Sensitivity	80%	91%	71%	84%	
DBS ¹	Unvaccinated		Vaccinated		
	N (34.5)	N (11.4)	N (34.5)	N (11.4)	
Specificity	99%	90%	99%	90%	
Sensitivity	92%	97%	63%	88%	
¹ DBS negatives ($n = 187$ from 89 samples), unvaccinated positives ($n = 194$ from 97 samples and vaccinated positives ($n = 631$ from 618 samples)					

Table 2. Predictive Values by % Seroprevalence for Plasma/Serum.

% Coronrovalance	Dradiativa Valua	Vaccinated	
% Seroprevalence	Predictive Value	N (34.5)	N (10)
0.7%	Positive (PPV)	41.8%	14.1%
	Negative (NPV)	99.8%	99.9%
	PPV * NPV	0.42	0.14
35%	Positive (PPV)	98.2%	92.6%
	Negative (NPV)	86.6%	91.6%
	PPV * NPV	0.85	0.85
80%	Positive (PPV)	99.8%	98.9%
	Negative (NPV)	46.5%	59.4%
	PPV * NPV	0.46	0.59

At seroprevalence higher than 35%, the best predictive value for N for plasma/serum is at a lower threshold of 10 BAU/mL.

Figure 2. Convalescent N antibody levels by vaccination status.

Conclusions

- In vaccinated individuals, calls for SARS-CoV-2 infection are now reliant on N, but anti-N antibody levels and seroconversion rates decrease in vaccinated individuals.
- Alternative lower thresholds for both plasma/serum and DBS have been established to improve N's predictive value.

References

1. Colwill, K. et al. A scalable serology solution for profiling humoral immune responses to SARS-CoV-2 infection and vaccination. Clin Transl Immunology 11, e1380, doi:10.1002/cti2.1380 (2022).

2 Isho, B. et al. Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Science immunology 5, doi:10.1126/sciimmunol.abe5511 (2020).

