Neutralization of Omicron Subvariants BA.5 and BQ.1 After Four COVID-19 Vaccine Doses in PLWH Receiving ART

Hope R. Lapointe¹, Peter K. Cheung^{1,2}, Yurou Sang², Siobhan Ennis², Francis Mwimanzi², Sarah Speckmaier¹, Evan Barad^{1,2}, Winnie Dong¹, Janet Simons^{3,4} Christopher F. Lowe^{3,4,5}, Marc G. Romnev^{3,4,5}, Chanson J. Brumme^{1,6}, Masahiro Niikura², Mark A. Brockman^{1,2,7}, Zabrina L. Brumme^{1,2} and the COVID-19 vaccine immunity study tear

British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada: ² Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada: ³ Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, Canada: ⁴ Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; ⁵ Division of Medical Microbiology and Virology, St. Paul's Hospital, Vancouver, Canada; ⁶ Department of Medicine, University of British Columbia, Vancouver, Canada; ⁷ Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada;

Background

- Limited data exist regarding the humoral immune benefits of fourth COVID-19 vaccine doses in people living with HIV (PLWH) who are receiving suppressive antiretroviral therapy (ART).
- · As most PLWH have now experienced COVID-19, it is also important to assess the benefits of fourth doses in this context.

Study Objective

In 2021 we established a prospective, longitudinal observational study in context of Canada's mass COVID-19 vaccine rollout to evaluate the strength and durability of vaccine immune responses in PLWH.

 Here, we quantify wild-type and Omicron-specific live virus neutralization in 63 COVID-19-naïve and -experienced PLWH following four doses of COVID-19 vaccine.

Methods

- Plasma was collected one month after fourth vaccine doses in 63 PLWH.
- Wild-type (WT)-, Omicron-BA.5- and Omicron-BQ.1-specific neutralization activities were quantified using a live virus assay.
- · Multiple linear regression was used to investigate the relationship between sociodemographic, health and vaccine-related variables and SARS-CoV-2 neutralization following four-dose vaccination.

Characteristic	PLWH (n=63)
HIV-related variables	
Receiving antiretroviral therapy, n (%)	63 (100)
Most recent plasma viral load, copies HIV RNA/mL, median [IQR]	<50 [<50 - <50]
Most recent CD4+ T-cell count in cells/mm3, median [IQR]	720 [540 - 920]
Nadir CD4+ T-cell count in cells/mm3, median [IQR]	280 [90 - 530]
Sociodemographic and health variables	
Age in years, median [IQR]	57 [44 – 65]
Female sex at birth, n (%)	9 (14)
White ethnicity, n (%)	46 (73)
Number of chronic conditions, median [IQR]	1 [0 - 1]
SARS-CoV-2 infection history. n (%)	
Naive	19 (30%)
Infection - pre-Omicron era	12 (19%)
Infection - Omicron era	32 (51%)
Vaccine details	
Initial two-dose regimen, n (%)	
mRNA-mRNA	51 (81)
ChAdOx1 – mRNA (heterologous)	6 (9.5)
ChAdOx1 - ChAdOx1	6 (9.5)
Days between first and second doses, median [IQR]	59 [53 – 67]
Third dose, n (%)	
BNT162b2	21 (33)
mRNA-1273	42 (67)
Days between second and third doses, median [IQR]	182 [134 – 192]
Fourth dose, n (%)	
BNT162b2 monovalent	9 (14%)
BNT162b2 bivalent	9 (14%)
mRNA-1273 monovalent	19 (30%)
mRNA-1273 bivalent	26 (41%)
Days between third and fourth doses, median [IQR]	258 [217-282]

Conclusions

- Fourth COVID-19 vaccine doses provide immunologic benefits to all PLWH on ART regardless of SARS-CoV-2 infection history.
- COVID-19-experienced PLWH showed significantly higher neutralization post-fourth dose compared to COVID-19-naïve PLWH. consistent with humoral benefits of 'hybrid' immunity.
- COVID-19-experienced PLWH displayed comparable Omicron-BA.5 and BO.1-specific neutralization regardless of the pandemic era of their SARS-CoV-2 infection (pre-Omicron vs. Omicron eras).
- · Omicron-BA.5-specific neutralization was significantly lower than WT in all PLWH regardless of COVID-19 experience. Omicron-BQ.1-specfic neutralization was significantly lower still.
- Bivalent vaccines that incorporate Omicron BA.1 or BA.4/BA.5 immunogens did not appear to elicit superior neutralization compared to the original monovalent vaccines.
- · These results support current public health recommendations that all adults receive a fourth COVID-19 vaccine dose within 6 months of their third vaccine dose (or their most recent SARS-CoV-2 infection).

Acknowledgements

We thank the participants, without whom this study would not have been possible.

Nadia Moran-Garcia, F. Harrison Omondi, Natalie Prystajecky, Paul Sereda, Junine Toy, Gisele Umviligihozo, Fatima Yaseen, and Landon Young