Lessons learned from monitoring T cell responses to SARS-CoV-2 infection and vaccination

Tania H. Watts University of Toronto

Acknowledgements

SARS-CoV-2 Convalescent Study

Jaclyn Law* Melanie Girard Irene Lau Gary Chao Lesley Ward Baweleta Isho Karen Colwill Bhavisha Rathod Feng Yun Yue Zhije Li Tania Watts Mario Ostrowski Anne-Claude Gingras James Rini Jen Gommerman Allison McGeer Samira Mubareka

FUNDING

FAST GRANT

Juan and Stefania Speck

COVID-19 GRO

COVID-19 GROUPE DE TRAVAIL IMMUNITY SUR L'IMMUNITÉ TASK FORCE FACE À LA COVID-19

IMPACT STUDY

Lunenfield-Tanenbaum Research Centre Mt. Sinai

Anne-Claude Gingras

Monica Dayam* Kento T. Abe Bhavisha Rathod Melanie Estefania Reuben Samson Queenie Hu Julia Kitaygorodsky

<u>University of Toronto</u> Tania Watts

Jaclyn Law* Michelle Cheung* Janna Shapiro* Ryan Law Irene Lau Birinder Ghumman Maddy Kern-Smith Victoria Rodriguez Mark Silverberg Joanne Stempak Rogier Goetgebuer Saima Rizwan Jenny Lee Liz Jacob

Krembil Research Institute UHN Vinod Chandran Daniel Pereira Mitchell Sutton Naomi Finkelstein Robert Inman Nigil Haroon

Women's College Dr. Vincent Piguet Lily Acheampong

Immunity to SARS-CoV-2

What do T cells tell us about immunity following SARS-CoV-2 infection or vaccination?

UNIVERSITY OF

RONTO

Cheung, Dayam, Shapiro et al. in prep.

Assays we used to assess memory T cell responses to SARS-CoV-2 after infection

Experimental workflow 3 assays: ICC, Secreted cytokines, Proliferation

Jaclyn Law

S-specific response dominated by IL-2+ CD4s and persists up to 9 months

Response to spike peptide pools: T1 median 59 days (30-154), T2v 160 days (55-249)

24 COVID-19 convalescent (12 male, 12 female), mainly mild cases

Similar results with other peptide pools tested: NP, M, E

Law et al. Journal of Immunology. 2022. 208, 429-443.

Dan et al. Science 2021 – 3 months Cohen et al. Cell 2021 – 6 months

SARS-CoV-2: fewer IFN-γ+T cells than IAV-specific responses, less multifunctional and CD4>CD8

Law et al. Journal of Immunology. 2022. 208, 429-443.

4-8 weeks, CD4+ Responses: Sum of all tested peptide pools (S, NP, M, E) vs IAV

Summary and Conclusions T cell responses to SARS-CoV-2 infection

Findings:

- IL-2 producing CD4 T cells were most frequent T cell subset to Spike, weak CD8 response
- Persistent phenotype up to 9 months PSO, moderate decline
- pTfh responses that correlate with plasma Abs
- More TNF response in the hospitalized cohort compared to the mild cohort (not shown)

Altogether, suggests SARS-CoV-2 T cell responses distinct from typical responses seen against influenza where CD8 IFNγ producing cells dominate

Lessons

- ICC combined with other markers- wealth of info- but low frequency-limits accuracy, time consuming
- AIM assay- didn't capture all cytokine producing cells, didn't reveal cytokine profile
- Chose CSA for next study- higher throughput- similar cytokine conclusions revealed as ICC, albeit can't distinguish CD4 vs. CD8 responses

IMPACT Study: Immune response after COVID-19 vaccination during maintenance therapy in immune-mediated inflammatory diseases (IMID)

Inclusions:

mRNA vaccines healthy controls & IMID patients <u>inflammatory bowel disease</u> (Crohn's disease, UC) inflammatory joint disease (rheumatoid or psoriatic arthritis, ankylosing spondylitis) inflammatory skin disease (psoriasis, hidradenitis suppurativa)

Exclusions: <18, COVID infections, steroids, B cell depletion

- Healthy controls
- IMID untreated
- methotrexate (MTX) / azathioprine (AZA)
- α-TNF+MTX/AZA
- α-TNF
- α-IL-17
- α-IL-23
- α-IL-12/23

UNIVERSITY OF TORONTC

Antibody levels, neutralization, T cell stimulation- secretion of cytokines/cytotoxic molecules Multivariate analysis controlled for age/sex/BMI/vaccine type

Anti-TNF group shows impaired humoral responses to SARS-CoV-2, especially VOC

 Anti-TNF lower antibody responses compared to rest of IMID group and HC throughout, driven by IBD group

Not shown:

 3 months after dose 2, anti-TNF treated IMID patients fail to neutralize VOCs (BA.1, BA.5): 3rd dose critical to broaden neutralization response to include VOC

Least-squares linear regression models controlled for age, BMI, sex, and vaccine type.

Cheung, Dayam, Shapiro et al. submitted

Reduced decay of neutralization after third and fourth vaccine doses

WT

VOC

Mixed-effects multivariate linear regression controlling for age, sex, BMI and vaccine type

4th dose essential in IMID patients to prolong response against VOCs

3rd and 4th doses reduce the magnitude of waning of neutralization activity in IMID patients.

T cell cytokines increase with successive vaccinations

Anti-TNF treated and total IMID- similar deficits 3 months post-dose 2

See Cheung et al. Poster for Further details

Cheung, Dayam, Shapiro,Law et al. submitted

What did we learn?

3rd dose

- Reduces the magnitude of waning over next 3 months
- Critical for achieving neutralization of VOC in <u>anti-TNF</u> treated patients; T cell responses to VOC largely unaffected
- Important for maximal cytokine responses in IMID patients (IL-2, IFNγ)

4th dose

- Maintains antibody and neutralization responses as measured to 3 months post vaccination
- Increases T cell IL-4 production in anti-TNF/combo treatment group

<u>3rd dose most critical to broaden and sustain responses; 4th dose has more subtle effects than 3rd dose</u>

Lessons

- Supports the view that this is a 3-dose vaccine, with additional effects of 4th dose in IMID group
- IMID patients show more rapid waning and need to be monitored for additional boosting
- Measuring more than one T cell cytokine is informative

T cell cytokines differ after vaccination vs. infection

- Vaccination: IL-4, no TNF
- Infection: TNF, but no IL-4; suggests more inflammatory, less help?

Limitations: limited sample size; attrition of participants; heterogeneity of diseases and treatments

- While antibody responses are easy to standardize, T cell responses are more difficult, multistep and wide range of assays used
- Need to choose T cell assay depending on goal- in depth immunophenotype or survey of population
- General conclusions were similar across the literature, but we are not at the point we can give someone a T cell "score"
- Rapid funding mechanisms were crucial for the rapid response
- You need trained people in the lab to respond rapidly to pandemics-limited the number of studies we could take on- early grants 6mos or 1 year- difficult to recruit to in timely manner
- Broad funding for research across disciplines is the only way to ensure that we can respond to
 future threats

Assay	ICC	AIM	Multiplexed CSA	Proliferation	ELISpot
Incubation time	18-24 h	18-24 h	48 h	6 days	24-48 h; variable
Advantages	 Single-cell resolution Assess function based on cytokine production Can distinguish T cell subsets Can concurrently measure AIM expression Short stimulation can estimate <i>ex vivo</i> responses 	 Single-cell resolution Measures total T cell responses Simple protocol Less sample manipulation Short stimulation can estimate <i>ex</i> <i>vivo</i> responses 	 Large panel of cytokines Higher throughput Simple protocol Less sample manipulation Quantitative 	 Single-cell resolution Expands low frequency responses 	 Single-cell resolution Quantitative Assess function based on cytokine produced More sensitive than ICC
Disadvantages	 Limited number of cytokines Readouts are qualitative Lower throughput 	 Cannot assess function Cannot distinguish T cell subsets 	Cannot distinguish source of cytokine in question	 May expand weakly cross- reactive T cells Long incubation period may introduce culture artefacts 	 Cannot distinguish source of cytokine Cannot distinguish T cell subsets
When to use	In depth analysis of a limited number of samples by flow cytometry	 Larger population studies Sorting for further analysis such as single cell RNA- sequencing 	 For complete cytokine profile Small as well as larger cohorts 	To detect weak responses	 Larger population based <u>studies</u> When a flow cytometer is not available

Table I How to Choose a T cell Assay During a Pandemic